Erklärung des Funktionsprinzips eines Michelson-Interferometers mit dem Doppler-Effekt

Axel Donges

Fachhochschule und Berufskollegs NTA Prof. Dr. Grübler gGmbH, Seidenstraße 12-35, D-88316 Isny im Allgäu, <u>ADonges@web.de</u> (Eingegangen: 05.11.2002; Angenommen: 03.02.2003)

Kurzfassung

Das Funktionsprinzip des Michelson-Interferometers wird mit Hilfe des Doppler-Effekts erklärt.

1. Einleitung

Zu den klassischen Interferenzversuchen im Schulunterricht gehört das Michelson-Interferometer [1-3]. Ein Laserstrahl - im Weiteren zur Vereinfachung als monochromatische, ebene, linear polarisierte Welle angenommen - wird mit einem Strahlteiler zunächst in zwei Teilstrahlen gleicher Amplitude zerlegt (siehe Abbildung 1). Nachdem die beiden Teilstrahlen 1 und 2 in den Interferometerarmen unterschiedlich lange optische Wege zurückgelegt haben, werden sie abermals geteilt und paarweise zur Überlagerung gebracht. Die Teilstrahlen A und B enthalten jeweils parallele Lichtwellen gleicher Amplitude, die beide Interferometerarme durchlaufen haben.

2. Erklärung des Funktionsprinzips

Wir gehen im Weiteren davon aus, dass Retro-Spiegel 2 mit der Geschwindigkeit ν nach rechts bewegt wird. Bei der Reflexion am bewegten Spiegel wird das Licht Doppler-verschoben [4, S. 239], während die am ruhenden Spiegel reflektierte Welle ihre Frequenz beibehält. Auf den beiden Detektoren A und B überlagern sich somit zwei Lichtwellen mit den Frequenzen

$$f_1' = f \tag{1a}$$

und

$$f_2' = f\left(1 - 2\frac{v}{c}\right) \tag{1b}$$

(f: Frequenz des vom Laser abgestrahlten Lichts, c: Lichtgeschwindigkeit) ⁱ. Die Detektoren liefern deshalb ein Schwebungssignal mit der Schwebungsdauer

$$T_S = \frac{c}{2vf} = \frac{\lambda}{2v} \tag{2}$$

(\(\lambda\): Wellenlänge des Lichts). Unter der Annahme, dass zur Zeit t=0 auf Detektor B gerade konstruktive Interferenz (d.h. maximale Intensität) vorliegt, gilt für Intensität der ebenen Teilwellen A und B:

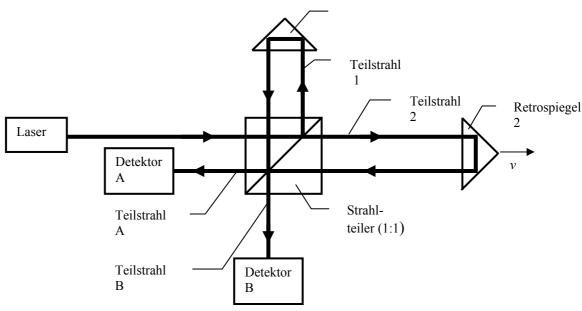


Abb. 1: Schematischer Aufbau eines Michelson-Interferometers

$$I_A = I_L \sin^2 \left(\frac{2\pi vt}{\lambda} \right) \tag{3a}$$

und

$$I_B = I_L \cos^2\left(\frac{2\pi vt}{\lambda}\right) \tag{3b}$$

 (I_A, I_B, I_L) : Intensitäten der Teilwellen A und B bzw. des Laserstrahls). Die Signale I_A und I_B sind phasenverschoben: Wird I_A maximal, nimmt I_B den Wert Null an und umgekehrt. Dies ist eine unmittelbare Folge der Energieerhaltung (bzw. der Phasenverschiebung von $\pi/2$, die zwischen reflektierter und transmittierter Welle bei der Strahlteilung auftritt [5]). Nur in diesem Fall ist die Summe der beiden Detektorsignale gleich dem Eingangssignalⁱⁱ:

$$I_A + I_B = I_L \left[\sin^2 \left(\frac{2\pi vt}{\lambda} \right) + \cos^2 \left(\frac{2\pi vt}{\lambda} \right) \right] = I_L$$
 (4)

Wird zum Schluss

$$vt = \Delta L \tag{5}$$

gesetzt, so folgt aus (3) das bekannte Ergebnis

$$I_A = I_L \sin^2 \left(2\pi \frac{\Delta L}{\lambda} \right) \tag{6a}$$

bzw.

$$I_B = I_L \cos^2 \left(2\pi \frac{\Delta L}{\lambda} \right) . \tag{6b}$$

Um von einem Intensitätsmaximum um nächsten zu gelangen, muss die optische Länge L eines Interferometerarms um $\Delta L = \lambda/2$ verändert werden.

3. Schlussbemerkung und Zusammenfassung

Die in dieser Notiz skizzierte Erklärung des Funktionsprinzips des Michelson-Interferometers will die herkömmliche Erklärung [z.B. 6], bei der die Längendifferenz der beiden Interferometerarme

mit der halben Lichtwellenlänge verglichen wird, nicht ersetzen, zumal diese für Schüler i.d.R. den einfacheren Zugang darstellen dürfte ⁱⁱⁱ. Für Studierende im Hochschulbereich ist es dennoch lehrreich, wenn ihnen eine alternative Erklärung, die von einem anderen Ansatz ausgeht, angeboten wird ^{iv}.

Ist das Prinzip der *Schwebung* bereits bekannt, so lässt sich die hier gegebene alternative Erklärung weniger mathematisch wie folgt zusammenfassen: Die Detektoren A und B "sehen" in den Retro-Spiegeln jeweils zwei virtuelle Spiegelbilder der Lichtquelle. Das eine Spiegelbild ruht, während sich das andere mit der doppelten Geschwindigkeit des Retro-Spiegels 2 von den Detektoren wegbewegt. Beide Detektoren empfangen damit jeweils zwei Lichtwellen, die sich wegen des Doppler-Effekts in der Frequenz geringfügig unterscheiden. Es wird daher von den Detektoren ein Schwebungssignal registriert, das durch die Gl. (6a) bzw. (6b) beschrieben wird.

4. Literatur

[1] Wittmann, J. & Jena, H. (1987): Physik, Wellenlehre Optik. München: Bayerischer Schulbuch-Verlag, S.47-48

[2] Kuhn, W. (1990): Physik Bd. II Teil 2. Braunschweig: Westermann Schulbuchverlag, S. 355

[3] Kuhn, W. (Hsg.) (1992): Handbuch der experimentellen Physik, Sekundarbereich II Band 4/I Optik. Köln: Aulis Verlag Deubner, S. 97-98

[4] Donges, A. & Noll, R. (1993): Lasermeßtechnik. Grundlagen und Anwendungen. Heidelberg: Hüthig

[5] Donges, A. (1995): Widerspricht das Superpositionsprinzip dem Energieerhaltungssatz?. Der mathematische und naturwissenschaftliche Unterricht 7/48, S. 413-414

[6] Bader, F. & Dorn, F. (1986): Physik - Oberstufe Gesamtband 12/13. Hannover: Schroedel Schulbuchverlag, S. 256

Doppler-Verschiebung auf. In nicht-relativistischer Näherung (
$$|v| \ll c$$
) gilt: $f_1' = f\left(1 - \frac{v}{c}\right)^2 = f\left(1 - 2\frac{v}{c}\right)$.

20

¹ Spiegel 2 entfernt sich sowohl von der Lichtquelle als auch von den Detektoren A und B. Es tritt daher eine zweifache

ii Anmerkung: Verschweigt man - wie in vielen Lehrbüchern - die Existenz des Teilstrahls A, so erspart man sich und den Schülern die Diskussion der Phasenverschiebung der Signale (3a) und (3b). Dadurch werden aber bei vielen Schülern Verständnisschwierigkeiten (Woher kommt / wohin geht die Energie bei der Zweistrahl-Interferenz?) vorprogrammiert.

iii Ausnahme: Die Erklärung des Funktionsprinzips eines sogenannten *Doppelfrequenz-Interferometers*, das ist ein Michelson-Interferometer, mit dem auch die Richtung der Spiegelverschiebung bestimmt werden kann, wird in der Literatur [z.B. 4, S. 147-149] üblicherweise über den Doppler-Effekt gegeben.

iv Ist Formel (1b) den Studierenden nicht bekannt, so kann der hier entwickelte Gedankengang auch umgekehrt werden: Mit Hilfe der konventionell gewonnenen Gleichung (6a) bzw. (6b) kann die Gleichung (1b) für die Doppler-verschobene reflektierte Welle hergeleitet werden.