A Computer Simulation of Cosmic Inflation

Lennert Sprenger¹, Hans-Otto Carmesin¹²³

¹Gymnasium Athenaeum Stade, Harsefelder Straße 40, 21680 Stade
²Studienseminar Stade, Bahnhofstraße 5, 21682 Stade
³Fachbereich Physik, Universität Bremen, 28334 Bremen

Abstract
From the Cosmic Microwave Background CMB, the flatness problem and the horizon problem arose. An extraordinarily increase of distances in the early universe, the Cosmic Inflation, was proposed as a possible solution, whereby suggested mechanisms for such an increase have been criticized (Steinhard, 2011). We apply a theory that explains the Cosmic Inflation by an extended Friedmann-Lemaitre model combined with an energy term (Carmesin, 2017). We investigate various questions by performing computer simulations. We observe a sequence of phase transitions that cause an extraordinarily fast increase in distances. Our findings are in excellent quantitative agreement with observations of the CMB. Thereby the theory depends only on first principles and the fundamental constants G, c and h and we apply no fit in particular. We present the development of the project in the framework of a Jugend forscht club.

1. Introduction
From the Cosmic Microwave Background CMB, the flatness problem and the horizon problem arose. To describe the expansion of the universe, a Friedmann-Lemaitre model has been frequently used until now (see Karttunen 2007). The Friedmann-Lemaitre differential equation

\[\frac{\dot{a}}{a}^2 = \frac{8\pi G}{3} \cdot (\rho_M + \rho_V) \] \[\text{[1]} \]

does not solve the two problems arising from the Cosmic Microwave Background. One additional problem, which is not solved by the Friedmann-Lemaitre equation is the singularity problem (see Kiefer 2008), which considers a singularity as non-physical. In the Friedmann-Lemaitre equation \(\rho_M \) is the matter density and \(\rho_V \) is the vacuum density. The vacuum density is constant. The solution of the Friedmann-Lemaitre model provides the evolution of the scale factor \(a(t) \).

2. Problems
The singularity problem is visible in the solved Friedmann-Lemaitre equation, where the density tends to infinity, when \(a(t) \) and \(t \) tends to zero (see figure 1).

The horizon problem and the flatness problem arise from the CMB (see figure 2).

3. The horizon problem
The horizon problem arises from the temperature fluctuations which amount to \(\frac{\Delta T}{T} = 0.000024 \). So the
full solid angle 4π covered by the Cosmic Microwave Background has a homogenous temperature distribution. The full solid angle is so large that on the basis of the Friedmann-Lamaitre equation it would be causally disconnected and it would not be possible for radiation to distribute the energy homogeneously in the time since the big bang.

4. The flatness problem
The second problem arising from the CMB is the flatness problem. The space-time curvature is measured and indicates a flat space on a large scale. Modelled with the Friedmann-Lemaitre equation it would have been even more flat in the early universe which is highly unlikely.

5. Possible solution for the problems
To solve the three problems a rapid increase in distances in the early universe, the Cosmic Inflation, was proposed by Allan Guth in 1981 (see Guth 1981). In many approaches to the problems an inflaton field is used, which requires very sensitive fit parameters to fit to observations. In this paper, we propose a new model without any fit parameters, an extended Friedmann-Lemaitre equation, to describe the Cosmic Inflation and solve these problems.

6. The model
The standard Friedmann-Lemaitre equation can be derived from a spherical model with a scale factor a, a probing mass m and the density ρ of the sphere.

\[\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \left(\frac{\rho M}{\rho PD} + \frac{\rho V}{\rho PD} \right) \] \[\text{[2]} \]

We extend the model by adding a radius for our probing mass in order to describe the density of the probing mass, which was not possible in the old model based on a point-like mass.

In order to obtain the corresponding dynamics, we derive the quantum physical expectation values $\langle \dot{a} \rangle$ and $\langle a \rangle$ and denote these by \ddot{a} and \dot{a} in the following (for details see Carmesin 2018 a,d). In the resulting extended Friedmann-Lemaitre equation we introduce the scaled density $\tilde{\rho} = \frac{\rho}{\rho PD}$ which is the matter density divided by the maximal density, the Planck density ρPD. From this new spherical model (see figure 4), we get the following extended Friedmann-Lemaitre equation for three dimensions (see equation [3]). Hereby we introduce the Planck time t_P.

\[\left(\frac{\dot{a}}{a}\right)^2 = \frac{2}{t_P^2} \cdot \tilde{\rho} \cdot \left[1 - 6 \cdot \tilde{\rho}^2 \right] \] \[\text{[3]} \]

Moreover we generalize this model to spatial dimensions $D \geq 3$ and obtain the following extended Friedmann-Lemaitre equation (see Carmesin 2018 a,d, see [4])

\[\left(\frac{\dot{a}}{a}\right)^2 = \frac{2}{t_P^2} \cdot \tilde{\rho} \left[1 - \sqrt{2^{D-2} \cdot (D - 1) \cdot D^2 \cdot \tilde{\rho}^{2(D-1)}} \right] \] \[\text{[4]} \]

with the corresponding scaled energy term (see Carmesin, 2018 a,d, see [5]):

\[E_D = -\frac{\tilde{\rho}^{D-1}}{M} + \sqrt{2^{D-2} \cdot (D - 1) \cdot D^2 \cdot \tilde{\rho}^{2(D-1)}} \] \[\text{[5]} \]

The scaled energy term E_D is the quantum physical expectation value $\langle E \rangle$ at the ground state divided by $m \cdot c^2$.

7. Dimensional transitions
The scaled energy E_D is calculated for each scaled density $\tilde{\rho}$ and for any Dimension $D \geq 3$ (see figure 5).
A Computer Simulation of Cosmic Inflation

<table>
<thead>
<tr>
<th>\tilde{D}</th>
<th>E_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-0.040976461381778</td>
</tr>
<tr>
<td>4</td>
<td>-0.047399707332933</td>
</tr>
<tr>
<td>5</td>
<td>-0.0341612190261753</td>
</tr>
<tr>
<td>6</td>
<td>-0.0291494031505907</td>
</tr>
<tr>
<td>7</td>
<td>-0.0256245858948968</td>
</tr>
<tr>
<td>8</td>
<td>-0.0230865194541782</td>
</tr>
<tr>
<td>9</td>
<td>-0.0211929929871053</td>
</tr>
<tr>
<td>10</td>
<td>-0.019733613375166</td>
</tr>
<tr>
<td>11</td>
<td>-0.0185769436727649</td>
</tr>
</tbody>
</table>

From the table in figure 5 we get the following graph.

Figure 5: Scaled energy E_D as a function of the spatial dimension D at the scaled density $\tilde{\rho} = 0.009$.

In order to apply the D-dimensional version of the extended Friedmann-Lemaître equation (see equation \{4\}), we calculate a critical density $\tilde{\rho}_{c,D}$ at which there occurs a dimensional transition of the ground state from $D+1$ to D for each dimension. For it we minimize the scaled energy term (see equation \{5\}). By applying the variational principle, we obtain the following values for the critical scaled densities (see figure 7).

<table>
<thead>
<tr>
<th>Dimension D</th>
<th>Scaled critical density $\tilde{\rho}_{c,D}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.006560789873286</td>
</tr>
<tr>
<td>4</td>
<td>0.0154690495420951</td>
</tr>
<tr>
<td>5</td>
<td>0.0270430431866556</td>
</tr>
<tr>
<td>6</td>
<td>0.03986033422661</td>
</tr>
<tr>
<td>7</td>
<td>0.0530506248138605</td>
</tr>
<tr>
<td>8</td>
<td>0.0661239958458446</td>
</tr>
</tbody>
</table>

Figure 7: Critical scaled densities for dimensional transitions.

8. Solving the extended Friedmann-Lemaître equation

The extended Friedmann-Lemaître equation can be solved with numerical integration. For it we used the Runge-Kutta method of fourth order.

Figure 8: Solved extended Friedmann-Lemaître equation: Discontinuities arise at dimensional transitions.

The dimensional transitions take place where the graph is not continuous (see figure 8). The graph in figure 8 shows symbolically the dimensional transitions with the corresponding increase in the scale factor. The exact values can be found in Model for the Dynamics of Space (see Carmesin 2018 a,d). Our critical density $\tilde{\rho}_{c,D}$ can be utilized in order to calculate the observed density of ρ_M of the universe. Our result is in excellent accordance with observations. Thereby no fit must be applied (see Carmesin 2017, see Carmesin 2018 a,d).

9. Summary

We solve the extended Friedmann-Lemaître equation generalized for spatial dimensions $D \geq 3$ numerically (see section 8). So we obtain the scaling radius a as a function of the time t including dimensional transitions at critical densities $\tilde{\rho}_{c,D}$ (see section 7). Based on this solution the singularity problem and the flatness problem can be solved when the durations of the dimensional transitions are calculated with help of Fermi’s golden rule (see Carmesin 2018 a,d). Furthermore these durations show in full detail how the singularity problem is solved by the dimensional transitions (see Carmesin 2018 a,d).
10. Literatur

