Sandwich Products and Reflections
 Martin Erik Horn
 HWR Berlin, FE Quantitative Methoden \& BSP Business School Berlin Potsdam
 www.grassmann-algebra.de - mail@grassmann-algebra.de

Business School Berlin Potsdam Hochschule für Management

Abstract

As reflections are an elementary part of model construction in physics, we really should look for a mathematical picture which allows for a very general description of reflections. The sandwich product delivers such a picture. Using the mathematical language of Geometric Algebra, reflections at vectors of arbitrary dimensions and reflections at multivectors (i.e. at linear combinations of vectors or blades of arbitrary dimensions) can be described mathematically in an astonishingly coherent picture. Mathematical ingredients: | Scalars | (0-vectors) | k, ℓ | \rightarrow |
| :--- | :--- | :--- | :--- |
| Vectors | (1-vectors) | \mathbf{r}, \mathbf{n} | \rightarrow |
| Bivectors | (2-vectors) | \mathbf{A}, \mathbf{N} | \rightarrow |
| Trivectors | (3-vectors) | \mathbf{V}, \mathbf{T} | \rightarrow |
| Quadvectors | (4-vectors) | \mathbf{Q}, \mathbf{Q} | \rightarrow |
| Pentavectors | (5-vectors) | \mathbf{P}, \mathbf{P} | \rightarrow |
| Hexavectors | (6-vectors) | $\boldsymbol{H}, \mathbf{H}$ | \rightarrow |
| Septavectors | (7-vectors) | \mathbf{S}, \mathbf{S} | \rightarrow |

\section*{These mathematical objects are required to describe ...}

.. 3d Geometric Algebra . 4d Spacetime Algebra of Special Relativity . Conformal Geometric Algebra \& 5d Cosmological Relativity . Conformal Spacetime Algebra .. Conformal Cosmological Algebra

Scala
Vecto
Bivec
Trive
Quad
Pent
Hex
Sep

$\begin{array}{lll}\text { (represented by quadvector } \mathbf{Q} \text {) } \\ \text { Scalars: } & \mathrm{k}_{\text {ref }}=\mathbf{Q k} \mathbf{Q}^{-1} & \\ \text { Vectors: } & \mathbf{r}_{\text {ref }}=-\mathbf{Q r} \mathbf{Q}^{-1} & \text { Thus hyperbolic rotations can be modeled as reflec- }\end{array}$ $\begin{array}{lll}\text { Bivectors: } & \mathbf{A}_{\text {ref }}=\mathbf{Q} \mathbf{A} \mathbf{Q}^{-1} & \text { tions in Euclidean space. This is shown in the fol- } \\ \text { Trivectors: } & \mathbf{V} & =-\mathbf{Q} \mathbf{V} \mathbf{Q}^{-1}\end{array}$ $\begin{array}{lll}\text { Trivectors: } & \mathbf{V}_{\text {ref }}=-\mathbf{Q} \mathbf{V} \mathbf{Q}^{-1} & \text { lowing figure with } \mathbf{M}_{\mathbf{1}}=3+\sigma_{\mathrm{x}} \text { and } \mathbf{M}_{\mathbf{1}}^{-1}=1 / 8\left(3-\sigma_{\mathrm{x}}\right) \\ \text { Quadvectors: } & \boldsymbol{Q}_{\text {ref }}=\mathbf{Q} \mathbf{Q} \mathbf{Q}^{-1} & \mathbf{l}\end{array}$
Pentavectors: $\quad \begin{aligned} & \boldsymbol{P}_{\text {ref }} \\ & \text { Pe }\end{aligned} \quad \mathbf{Q} \boldsymbol{Q} \mathbf{Q}^{-1} \quad \sigma_{y} \Rightarrow \mathbf{r}=\mathbf{M}_{\mathbf{1}} \mathbf{r} \mathbf{M}_{1}^{-1}=1,25 \sigma_{y}+0,75 \sigma_{x} \sigma_{y}$

Hexavectors:	$\boldsymbol{H}_{\text {ref }}=\mathbf{Q} \boldsymbol{H} \mathbf{Q}^{-1}$
Septavectors:	$\boldsymbol{S}_{\mathrm{ref}}=-\mathbf{Q} \boldsymbol{S} \mathbf{Q}^{-1}$

$\underset{\substack{\text { Reflection at a } 5 \mathrm{~d} \text { space } \\ \text { (represented by pentavector } \mathrm{P} \text {) }}}{\text { spacetime }}$
$\begin{array}{ll}\text { (represented by pentavector } \mathbf{P} \text {) } \\ \text { Scalars: } & \mathrm{k}_{\text {ref }}=\mathbf{P k} \mathbf{P}^{-1} \\ \text { Vect }\end{array}$
Vectors:
Bivectors:
Trivectors:
Trivectors:
Quadvectors:
Pentavectors:
Hexavectors:
Reflection at a 6d space or spacetime
(represented by hexavector H)
(represented by hexavector \mathbf{H})
Scalars:
Vectors:
Bivectors:
Trivectors:
Quadvectors:
Pentavectors:
Hexavectors:
Septavectors:
$\mathrm{k}_{\text {ref }}=\mathbf{H K H}^{-1}$
$\mathbf{r}_{\text {ref }}=-\mathrm{HrH}^{-}$

\Rightarrow Linear combinations of vectors (or blades) of different dimensions are called multivectors. A sandwich product of a mathematical object sandwiched between a multivector and its inverse equals a reflection of the mathematical object at this multivector will be discussed in the following.

$\mathbf{A}=\sigma_{x} \sigma_{y} \Rightarrow \mathbf{A}^{\prime}=\mathbf{M}_{1} \mathbf{A} \mathbf{M}_{1}^{-1}=0,75 \sigma_{y}+1,25 \sigma_{x} \sigma_{y}$

This hyperbolic rotation changes the geometric quality of k-vectors: Line elements are transformed into area elements and area elements into line elements.

Example I: Hyperbolic rotations

$\mathbf{M}_{\mathbf{1}}=\ell+\mathbf{n}=\sqrt{\ell^{2}-\mathbf{n}^{2}}(\cosh \alpha+\sinh \alpha \hat{\mathbf{n}})$
$\mathbf{M}_{1}^{-1}=\frac{\ell-\mathbf{n}}{\ell^{2}-\mathbf{n}^{2}}=\frac{\cosh \alpha-\sinh \alpha \hat{\mathbf{n}}}{\sqrt{\ell^{2}-\mathbf{n}^{2}}} \quad \hat{\mathbf{n}}^{2}=\mathbf{1}$
and $\mathbf{r}=\mathbf{r}_{\mathbf{n}}+\mathbf{r}_{\perp} \quad \mathbf{r}_{\mathbf{n}} \| \mathbf{n} \quad \mathbf{r}_{\perp} \perp \mathbf{n}$
$\Rightarrow \mathbf{M}_{\mathbf{1}} \mathbf{r} \mathbf{M}_{1}{ }^{-1}=\mathbf{r}_{\mathrm{n}}+\cosh (2 \alpha) \mathbf{r}_{\perp}+\sinh (2 \alpha) \hat{\mathbf{n}} \mathbf{r}_{\perp}$

Example II: Euclidean rotations
$\mathbf{M}_{\mathbf{2}}=\ell+\mathbf{N}=\sqrt{\ell^{2}-\mathbf{N}^{2}}(\cos \alpha+\sin \alpha \hat{\mathbf{N}})$
$\mathbf{M}_{\mathbf{2}}{ }^{-1}=\frac{\ell-\mathbf{N}}{\ell^{2}-\mathbf{N}^{2}}=\frac{\cos \alpha-\sin \alpha \hat{\mathbf{N}}}{\sqrt{\ell^{2}-\mathbf{N}^{2}}} \quad \hat{\mathbf{N}}^{2}=-\mathbf{1}$
and $\mathbf{r}=\mathbf{r}_{\mathbf{N}}+\mathbf{r}_{\perp} \quad \mathbf{r}_{\mathbf{N}} \| \mathbf{N} \quad \mathbf{r}_{\perp} \perp \mathbf{N}$
$\Rightarrow \mathbf{M}_{\mathbf{2}} \mathbf{r} \mathbf{M}_{\mathbf{2}}^{-1}=\mathbf{r}_{\perp}+\cos (2 \alpha) \mathbf{r}_{\mathbf{N}}+\sin (2 \alpha) \hat{\mathbf{N}} \mathbf{r}_{\mathbf{N}}$
Thus Euclidean rotations can be modeled as reflections at parallelograms. This is shown in the following figure with $\mathbf{M}_{\mathbf{2}}=3+\sigma_{y} \sigma_{x}=3-\sigma_{x} \sigma_{y}$ and $\mathbf{M}_{2}^{-1}=1 / 10\left(3+\sigma_{x} \sigma_{y}\right)$ $\mathbf{r}_{\mathbf{1}}=\sigma_{\mathrm{x}} \quad \Rightarrow \mathbf{r}_{1}{ }^{\prime}=\mathbf{M}_{\mathbf{2}} \mathbf{r}_{\mathbf{1}} \mathbf{M}_{\mathbf{2}}{ }^{-1}=0,8 \sigma_{\mathrm{x}}+0,6 \sigma_{\mathrm{y}}$ $\mathbf{r}_{\mathbf{2}}=\sigma_{y} \quad \Rightarrow \mathbf{r}_{\mathbf{2}}{ }^{\prime}=\mathbf{M}_{\mathbf{2}} \mathbf{r}_{\mathbf{2}} \mathbf{M}_{\mathbf{2}}{ }^{-1}=-0,6 \sigma_{\mathrm{x}}+0,8 \sigma_{\mathrm{y}}$

The geometric quality (dimension) of k-vectors is conserved.

