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Kurzfassung 

In diesem Beitrag setzen wir uns mit der Dynamik des frühen Universums auseinander. Dafür 
werden wir uns eine einfache Gleichung zur Berechnung herleiten und wir werden eine Methode 
zur Berechnung aufzeigen. Im Anschluss werden wir dann unsere Methode überprüfen und unsere 
Ergebnisse interpretieren. Anhand der Interpretation werden wir noch mögliche Verbesserungen 
und Anwendungsbereiche diskutieren. 
 
Abstract 
In this paper we treat the dynamics of the universe and we will derive an equation. The derivation 
is intended to show that the equation can be solved and we will test whether the results obtained 
contain errors. In the last part of the essay we will discuss the possibilities how our program can be 
used and in which cases it makes sense to use it. 
 

 

1.  Expansion of the universe 

We will take a closer look at the expansion in the 

early universe. To do this, we calculate the extent of 

the Light Horizon over time, the largest distance we 

can observe on earth.   

 

Fig.1: Graph that shows the evolution of the density 

and the extent of the Light Horizon in our universe 

(Carmesin (2021)). 

Since equations can change throughout multiple 

factors, we will look at the Planck era and will look 

for an equation here. 

To receive an equation that we can use later, we look 
at a ball with a radius that can be used as a model for 
our universe. For further additions, we need a for-
mula that also depends on the density  as it is not 
constant. We also need an equation that is not fixed 
in one dimension D. We use the following formula 
(Carmesin (2021)):  
 

𝑎 = (2 ∗ )− 
1

𝐷+1 {1} 
 

The dimension D changes at critical densities but is 
constant in the time periods between the transitions.  
In the next step, we take the derivative of equation 
{1} by time and by . As we want to look at  and 
its time evolution we have to combine both of those 
equations. 

The derivation of a by  can be calculated very 

quickly. For this we charge  

 

𝑑𝑎

𝑑
= (−

1

𝐷+1
) ∗ 2 ∗  (2 ∗  )− 

1

𝐷+1
−1  {2} 

 

from which we need the inverted value. We get  

𝑑

𝑑𝑎
= −(𝐷 + 1) ∗  

1

2
∗ (2 ∗ )

1

𝐷+1
+1

 {3} 

 

as the rate of change of  by a.  

Since we don’t have an equation that includes time, 

we cannot use our mathematical principles as we did 

before. We use an equation which describes the 

derivation of a with respect to time that follows from 

the EFLE and can be called as Hubble constant 𝐻q 

(Carmesin (2019)). It also depends on  which is 

important. We use  

 

𝐻q = (2 ∗ )
𝐷2+𝐷+2

2∗𝐷+2  ≙  
𝑑𝑎

𝑑𝑡
 {4} 

 

and have our equation for the derivative of a by 
time. 
Now we combine equations {3} and {4} with multi-

plication, so we get the derivative of  by time after 

reducing the fractions. In the same step, we also 

simplify our equation by using power laws as we 

have the same bases 2 and . We get  
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𝑑

𝑑𝑡
= −(𝐷 + 1) ∗  

1

2
∗ (2 ∗  )

1

𝐷+1
+1+

𝐷2+𝐷+2

2∗𝐷+2  {5} 

 
as our final equation for the calculation. 
In the equation, natural units such as the Planck 
density P are used. Those values can be derived 
from the natural constants light speed c, gravitation-
al constant G and the reduced Planck constant h. 
Throughout those values, it is also possible to derive 
a value for the Planck time tP which will also be 
important later on.  
For the Planck density, we have a value of 5.155 * 
10

96 
kg/m

3
 which will be considered as 1 unit. It is 

important to know that the Planck density is double 
of the highest achievable density which should be 
reached at the time 0 when the Big Bang just hap-
pened. 
For the Planck time, we have a value of 5.391 * 10

-44
 

s. It is the smallest value of the time that we can 
possibly observe in a single measurement of a quan-
tum object. Like the Planck density, it will be con-
sidered as 1 in the calculations. 

2.  Evolution to solve our equation 

In the next step, we start with the calculation for our 

equation. Therefore, we have developed a program 

build in Java that is solving our problem numerical-

ly. We need a numerical method, as we want to 

advance our program in the future. Therefore, equa-

tion {5} can be added with equations for the quanti-

zation for example. All the variables and constants 

such as  and D are initialized as variables. We use 

the Euler method as it is a quite simple numerical 

method. The starting time and the starting density 

have to be put in as parameters. Afterwards the pro-

gram will generate at least one .csv table.  

Our program contains the critical densities as a list 

as they are not variable and do not change in any 

situation. When a critical density is reached, we 

change the value of the dimension by at least 1.  

3.  Calculation and interpretation of the results 

By using our program, we received more than 64 

billion results in the timeline from around 598 tP to 

534 tP. We started with a value of 0.11579 p. We 

got a value that is not possible because it is way 

higher than p. It has happened due to a maximum 

number of dimensional transitions implemented. 

Realistic would have been dimensional transitions 

up to D = 301. We just had D = 55 as our final val-

ue. At 534 tP, our program stopped as we reached 

more than the maximum possible density P as we 

did not have enough dimensional transitions for 

going on.  

Also, our equation {5} could be added by terms that 

make it more precise (Carmesin (2019)). Our critical 

densities are based on a calculation made with these 

terms.  

Therefore, the results we received cannot be the 

exact values which are also proved by the density 

higher than p. 

 

Fig.2: Graph of (t) we got using our program. The 

graph is made in the bounds of 534 tP to 598tP. 

Yet we got a lot of values that look quite realistic. 

Using Excel, we could create graphs that show time 

spans of 10 Planck times because we had problems 

showing more than 1 million values which was 

shown by inventing our program. By putting images 

of the different graphs next to each other we could 

still see graphs that show values that look possible at 

the first sight. Also, by adding more dimensional 

transitions to our calculation we could see that we 

could delay when we reached p. Still, we would 

have not reached the exact time evolution, which 

could already be seen in comparing with existing 

values we used for the dimensional transitions.  

4.  Develop a way to review our results 

To check on our results we integrate equation {5}. 

We get an equation that can be used in the periods 

when D is constant. Therefore, we first simplify by 

substitution. Our factors on the right side, not con-

taining ,  will be called , our exponent will be 

called . We have 

d

dt
=   ∗   {6} 

as our simplified equation. 

In the next step, we have to separate our variables t 

and . For that, we multiply with dt and divide by 

. In reality,  will only tend to 0 but does not 

reach it, so we can divide through it. We now have 

d


 =   ∗ dt {7} 

as our equation that can be integrated. Since the 

variables are separated, we can define a precise 

primitive. We get 

5. 1

−+1
∗  −+1 =   ∗ t {8} 
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which we could use now. For what we want to check 

later, it would be better to have an expression in 

which t is separated. Therefore, we divide by . The 

result is a function from which we can get values for 

the time. We get  

1

−+1
 ∗  

1


 ∗  −+1 =  t() {9} 

which we now put our expressions for  and , so 

we have  

1

−
1

D + 1
 −  

D2 + D + 2
2 ∗ D + 2

∗  

 
1

−(D + 1)
2

∗ 2
1

D+1
 + 1 + 

D2+D+2
2∗D+2

 ∗  −
1

D+1
 − 

D2+D+2
2∗D+2  

=  t() {10} 

with the bounds of the time and  where dimension-

al transitions have happened. 

Since we want to have a look at the timespans we 

received with our program, we have to think of a 

method to receive t. A very simple way of doing so 

is to subtract t(1) – t(2) in which 1 and 2  both 

are critical densities. We get 

t(1)  −  t(2) = t {11} 

that can be used to get the values for the timespans if 

the equation {10} is applied in the bounds. As one 

of the time bounds is fixed, we think of how we can 

get the other bound. For that, we remove t from tc 

the time at which a dimensional transition has hap-

pened. We get 

tc −  t = tn {12} 

for the new bound that will help to reduce mistakes 

that we got from our program. 

5.  Checking the results 

Der Beitrag ist durch Überschriften nach der Dezi-

malklassifikation (z.B. 1., 1.1, 1.1.1, 1.1.1.1) (For-

matvorlage: PhyDid-Überschrift 1-4) höchstens bis 

zur vierten Dezimale differenziert zu gliedern.  

Literaturzitate werden in der für wissenschaftliche 

Zeitschriften üblichen Weise eingefügt (vgl. Hin-

weise gemäß DIN 1505 oder APA 

(http://www.phydid.de/index.php/phydid-

b/about/submissions#authorGuidelines). 

Auch die Beschriftung von Diagrammen richtet sich 

nach den DIN- oder APAVorschriften.  

Quellen zum Text werden bei DIN 1505 mit eckigen 

Klammern „[1]“ durchnummeriert. Bei APA wird 

die Kurzreferenz im Text  mit „(Nachname, 2016, 

S.10)“ angegeben. In beiden Fällen folgt die aus-

führliche Quellenangabe im Literaturverzeichnis. 

Anmerkungen zum Text werden durchnummeriert 

und am Ende des Beitrages angeführt.  

Jedem Beitrag wird eine Kurzfassung des Artikels 

vorangestellt.  

Die Beiträge werden in der Regel in Deutsch ver-

fasst sein, eine Veröffentlichung in Englisch ist aber 

auch möglich.  

6.  Interpretation 

In the previous calculations we got values that are 

not exactly the same. If the two values we compared 

to each other would have been the same, we could 

conclude from this that we didn’t make any mis-

takes. As the values are not exactly the same, we 

have to check why problems occurred.  

First, we check on our equations {5} and {10}. As  

{10} is directly made of {5}, then we have to check 

on {5} because mistakes can only be made at this 

point. 

Since we cannot find a mistake at this point, we 

think about our method that we used to calculate. 

We used a numerical method because it is a simple 

way to solve a DEQ like we have it here. Problems 

that could occur using such a method are unprecise 

values, but one way of finding a solution. In compar-

ison, our integration is very precise and just has the 

time bounds we solved with our numerical method. 

As we used fixed values for , problems could have 

only occurred in the part containing t. Except for the 

first calculation we made in chapter 5), we used the 

time values we got from the calculation before. If we 

used the time values from the program itself, the 

difference would be even greater.  

Also, we used the bounds that were written in our 

Excel table. Using our program, we had some test 

outputs that showed more precise values for t. We 

could see values for t that are more precise, up to ten 

more numbers. By using those numbers, we would 

probably get an even smaller difference.  

In the end, it will probably be our numerical method, 

as the timespans that we would expect are larger in 

our equations {10} and {11}, a problem which can 

occur when you have numerical methods. 

7.  Possible improvements 

We still do not have any exact values, so we can 

envision improvements that could be made.  

One of the easiest ways to improve a numerical 

method, is to reduce the width we calculate with. In 

our case, we used to go 10-9 time units back per 

calculation. If we would advance that to 10-10 or 

even 10-11, we could get closer to the expected 

result.  

Although this seems to be a good theory, it wouldn’t 

be a good idea in practice. If we advanced with a 
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factor of 10-1 or 10-2 e.g., we would need a factor 

of 101 or 102 for the number of calculations. That 

also results in the time we need to run the calcula-

tion. For the calculation described in chapter 3) we 

needed around 2h 30mins as our computation time. 

Just by advancing with the factor 10, we would 

probably end up with 1 day of needed time. There-

fore, this idea is no option. 

We think of switching our numerical method. We 

hope that a multistep method, will allow us to per-

form less time-consuming and even more precise 

calculations. 

But in the end, all of these improvements still won’t 

fit exactly the time evolution that happened. For 

that, we need additional equations for the time the 

dimensional transitions need for example as already 

said before. Therefore, we have achieved one of the 

best possible results, in which we have a good rela-

tion between precise values and time expenditure, 

since our difference is close to zero. 

Text-Beiträge werden im PDF-Format (les- und 

druckbar z.B. mit dem frei erhältlichen ADOBE-

Acrobat-Reader®) publiziert. Es sollten daher re-

produktionsreife Dokumente im PDF-Format einge-

reicht werden.  

8.  Summary 

While the measurements of the expansion of the 

universe are not a too big mystery, calculating is still 

a very time-consuming process. Although our pro-

gram is doing a good job by now, it’s not finished as 

we don’t have an exact time evolution. Still, this 

program gave us a good base. It is not impossible for 

us to determine the exact timetable, but we will 

continue to develop this. 
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